RSS   Podatności dla 'Santricity smi-s provider'   RSS

2021-08-24
 
CVE-2021-3711

CWE-120
 

 
In order to decrypt SM2 encrypted data an application is expected to call the API function EVP_PKEY_decrypt(). Typically an application will call this function twice. The first time, on entry, the "out" parameter can be NULL and, on exit, the "outlen" parameter is populated with the buffer size required to hold the decrypted plaintext. The application can then allocate a sufficiently sized buffer and call EVP_PKEY_decrypt() again, but this time passing a non-NULL value for the "out" parameter. A bug in the implementation of the SM2 decryption code means that the calculation of the buffer size required to hold the plaintext returned by the first call to EVP_PKEY_decrypt() can be smaller than the actual size required by the second call. This can lead to a buffer overflow when EVP_PKEY_decrypt() is called by the application a second time with a buffer that is too small. A malicious attacker who is able present SM2 content for decryption to an application could cause attacker chosen data to overflow the buffer by up to a maximum of 62 bytes altering the contents of other data held after the buffer, possibly changing application behaviour or causing the application to crash. The location of the buffer is application dependent but is typically heap allocated. Fixed in OpenSSL 1.1.1l (Affected 1.1.1-1.1.1k).

 
 
CVE-2021-3712

CWE-125
 

 
ASN.1 strings are represented internally within OpenSSL as an ASN1_STRING structure which contains a buffer holding the string data and a field holding the buffer length. This contrasts with normal C strings which are repesented as a buffer for the string data which is terminated with a NUL (0) byte. Although not a strict requirement, ASN.1 strings that are parsed using OpenSSL's own "d2i" functions (and other similar parsing functions) as well as any string whose value has been set with the ASN1_STRING_set() function will additionally NUL terminate the byte array in the ASN1_STRING structure. However, it is possible for applications to directly construct valid ASN1_STRING structures which do not NUL terminate the byte array by directly setting the "data" and "length" fields in the ASN1_STRING array. This can also happen by using the ASN1_STRING_set0() function. Numerous OpenSSL functions that print ASN.1 data have been found to assume that the ASN1_STRING byte array will be NUL terminated, even though this is not guaranteed for strings that have been directly constructed. Where an application requests an ASN.1 structure to be printed, and where that ASN.1 structure contains ASN1_STRINGs that have been directly constructed by the application without NUL terminating the "data" field, then a read buffer overrun can occur. The same thing can also occur during name constraints processing of certificates (for example if a certificate has been directly constructed by the application instead of loading it via the OpenSSL parsing functions, and the certificate contains non NUL terminated ASN1_STRING structures). It can also occur in the X509_get1_email(), X509_REQ_get1_email() and X509_get1_ocsp() functions. If a malicious actor can cause an application to directly construct an ASN1_STRING and then process it through one of the affected OpenSSL functions then this issue could be hit. This might result in a crash (causing a Denial of Service attack). It could also result in the disclosure of private memory contents (such as private keys, or sensitive plaintext). Fixed in OpenSSL 1.1.1l (Affected 1.1.1-1.1.1k). Fixed in OpenSSL 1.0.2za (Affected 1.0.2-1.0.2y).

 
2019-02-27
 
CVE-2019-1559

CWE-200
 

 
If an application encounters a fatal protocol error and then calls SSL_shutdown() twice (once to send a close_notify, and once to receive one) then OpenSSL can respond differently to the calling application if a 0 byte record is received with invalid padding compared to if a 0 byte record is received with an invalid MAC. If the application then behaves differently based on that in a way that is detectable to the remote peer, then this amounts to a padding oracle that could be used to decrypt data. In order for this to be exploitable "non-stitched" ciphersuites must be in use. Stitched ciphersuites are optimised implementations of certain commonly used ciphersuites. Also the application must call SSL_shutdown() twice even if a protocol error has occurred (applications should not do this but some do anyway). Fixed in OpenSSL 1.0.2r (Affected 1.0.2-1.0.2q).

 
2018-10-30
 
CVE-2018-0734

CWE-320
 

 
The OpenSSL DSA signature algorithm has been shown to be vulnerable to a timing side channel attack. An attacker could use variations in the signing algorithm to recover the private key. Fixed in OpenSSL 1.1.1a (Affected 1.1.1). Fixed in OpenSSL 1.1.0j (Affected 1.1.0-1.1.0i). Fixed in OpenSSL 1.0.2q (Affected 1.0.2-1.0.2p).

 
2018-10-29
 
CVE-2018-0735

CWE-320
 

 
The OpenSSL ECDSA signature algorithm has been shown to be vulnerable to a timing side channel attack. An attacker could use variations in the signing algorithm to recover the private key. Fixed in OpenSSL 1.1.0j (Affected 1.1.0-1.1.0i). Fixed in OpenSSL 1.1.1a (Affected 1.1.1).

 

 >>> Vendor: Netapp 87 Produkty
Data ontap
Oncommand balance
Oncommand workflow automation
Clustered data ontap
Oncommand system manager
Netapp plug-in
Snap creator framework
Metrocluster tiebreaker
Oncommand insight
Snapdrive
Virtual storage console for vmware vsphere
Snapcenter server
Oncommand unified manager for clustered data ontap
Ontap select administration utility
Oncommand unified manager core package
Altavault
Oncommand api
Storagegrid webscale
Vasa provider
Service level manager
Cloud backup
Hyper converged infrastructure
Solidfire element os
Oncommand unified manager
Santricity smi-s provider
Steelstore
Cn1610 firmware
Data ontap edge
Element software management node
Solidfire element os management node
Element software
Santricity cloud connector
Active iq
E-series santricity os controller
Snapcenter
Snapdriver
Ontap select deploy
Steelstore cloud integrated storage
Storage automation store
Snapmanager
Ontap select deploy utility
Storagegrid
Active iq performance analytics services
Ontap select deploy administration utility
Element software management
Fas/aff baseboard management controller
E-series santricity management plug-ins
E-series santricity web services proxy
Service processor
Aff baseboard management controller
Fas baseboard management controller
Storagegrid webscale nas bridge
Cloud insights
Oncommand api services
Trident
E-series santricity management
E-series santricity storage manager
E-series santricity web services
Brocade network advisor
Virtual storage console
Hyper converged infrastructure compute node
Clustered data ontap antivirus connector
Host agent
Smi-s provider
Hci storage nodes
Data ontap operating in 7-mode
Oncommand unified manger
Baseboard management controller firmware
E-series santricity unified manager
Oncommand cloud manager
Active iq unified manager
Element healthtools
Element os
HCI
Element
Hci management node
Solidfire
Hci storage node
Element plug-in for vcenter server
Management services for element software and netapp hci
Solidfire \& hci management node
Cloud manager
Brocade fabric os
Manageability software development kit
Storage encryption
Santricity unified manager
Ontap system manager


Copyright 2021, cxsecurity.com

 

Back to Top